If A= <5 ,1 ,-2 > and B= <4 ,-2 ,3 >, what is A*B -||A|| ||B||?

1 Answer
May 12, 2017

12-sqrt(870)

Explanation:

For two vectors A and B of the form A=< A_x,A_y,A_z > and B=< B_x,B_y,B_z >, the dot product A*B is given by (a_x*b_x)+(a_y*b_y)+(a_z*b_z).

For A=< 5,1,-2 > and B=< 4,-2,3 >, we have:

A*B=(5*4)+(1*-2)+(-2*3)=20-2-6=color(blue)12

The next part is the product of the magnitudes of vectors A and B. The magnitude of a vector A=< A_x,A_y,A_z > is given by:

|A|=sqrt((A_x)^2+(A_y)^2+(A_z)^2 )

For the given vectors A and B:

|A|=sqrt((5)^2+(1)^2+(-2)^2)=sqrt(25+1+4)=sqrt(30)

|B|=sqrt((4)^2+(-2)^2+(3)^2)=sqrt(16+4+9)=sqrt(29)

We then have |A|*|B|=sqrt(30)*sqrt(29)=sqrt(870)

Then A*B-|A||B|=12-sqrt(870).