If A = <5 ,-1 ,3 >A=<5,1,3>, B = <2 ,-2 ,5 >B=<2,2,5> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Feb 14, 2017

The angle is =68.8=68.8º

Explanation:

Let's start by calculating

vecC=vecA-vecBC=AB

vecC=〈5,-1,3〉-〈2,-2,5〉=〈3,1,-2〉C=5,1,32,2,5=3,1,2

The angle between vecAA and vecCC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costhetaA.C=ACcosθ

Where thetaθ is the angle between vecAA and vecCC

The dot product is

vecA.vecC=〈5,-1,3〉.〈3,1,-2〉=15-1-6=8A.C=5,1,3.3,1,2=1516=8

The modulus of vecAA= ∥〈5,-1,3〉∥=sqrt(25+1+9)=sqrt355,1,3=25+1+9=35

The modulus of vecCC= ∥〈3,1,-2〉∥=sqrt(9+1+4)=sqrt143,1,2=9+1+4=14

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=8/(sqrt35*sqrt14)=0.36cosθ=A.CAC=83514=0.36

theta=68.8θ=68.8º