If A = <-5 ,2 ,1 >, B = <-8 ,7 ,2 > and C=A-B, what is the angle between A and C?

1 Answer
May 12, 2017

The angle is =143.36º

Explanation:

Let's start by calculating

vecC=vecA-vecB

vecC=〈-5,2,1〉-〈-8,7,2〉=〈3,-5,-1〉

The angle between vecA and vecC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costheta

Where theta is the angle between vecA and vecC

The dot product is

vecA.vecC=〈-5,2,1〉.〈3,-5,-1〉=-15-10-1=-26

The modulus of vecA= ∥〈-5,2,1〉∥=sqrt(25+4+1)=sqrt30

The modulus of vecC= ∥〈3,-5,1〉∥=sqrt(9+25+1)=sqrt35

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=-26/(sqrt30*sqrt35)=-0.80

theta=143.36º