If A = <5 ,2 ,5 >A=<5,2,5>, B = <6 ,5 ,3 >B=<6,5,3> and C=A-BC=AB, what is the angle between A and C?

2 Answers
Jul 11, 2017

The angle is =92.1º

Explanation:

Let's start by calculating

vecC=vecA-vecB

vecC=〈5,2,5〉-〈6,5,3〉=〈-1,-3,2〉

The angle between vecA and vecC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costheta

Where theta is the angle between vecA and vecC

The dot product is

vecA.vecC=〈5,2,5〉.〈-1,-3,2〉=-5-6+10=-1

The modulus of vecA= ∥〈5,2,5〉∥=sqrt(25+4+25)=sqrt54

The modulus of vecC= ∥(-1,-3,2〉∥=sqrt(1+9+4)=sqrt14

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=-1/(sqrt54*sqrt14)=-0.036

theta=92.1º

Jul 11, 2017

We can start by finding vecC. To subtract vectors, we subtract the corresponding components. For vecA-vecB, we have:

vecC = <5,2,5> - <6,5,3>

= <(5-6),(2-5),(5-3)>

=<-1,-3,2>

The angle between two vectors can be found using this general formula:

cos(theta)=(veca*vecb)/(|veca|*|vecb|)

We can start by finding the dot product of A and C.

vecA*vecC=<5,2,5> *<-1,-3,2>

=(5*-1)+(2*-3)+(5*2)

=-5-6+10

=-1

Now we can find the product of the magnitude of each vector.

|vecA|=|<5,2,5>

=sqrt(5^2+2^2+5^2)

=sqrt(54)

=3sqrt(6)

|vecB|=|<-1,-3,2>

=sqrt((-1)^2+(-3)^2+2^2)

=sqrt(14)

So the product of the magnitudes is 3sqrt6*sqrt14=3sqrt(84)=6sqrt(21)

We now have:

cos(theta)=-1/(6sqrt21)=-sqrt21/126

Solving for theta:

theta=arccos(-sqrt21/126)

=92 ^o