Let's start by calculating
vecC=vecA-vecB→C=→A−→B
vecC=〈5,2,-5〉-〈6,5,9〉=〈-1,-3,-14〉→C=⟨5,2,−5⟩−⟨6,5,9⟩=⟨−1,−3,−14⟩
The angle between vecA→A and vecC→C is given by the dot product definition.
vecA.vecC=∥vecA∥*∥vecC∥costheta→A.→C=∥→A∥⋅∥→C∥cosθ
Where thetaθ is the angle between vecA→A and vecC→C
The dot product is
vecA.vecC=〈5,2,-5〉.〈-1,-3,-14〉=-5-6+70=59→A.→C=⟨5,2,−5⟩.⟨−1,−3,−14⟩=−5−6+70=59
The modulus of vecA→A= ∥〈5,2,-5〉∥=sqrt(25+4+25)=sqrt54∥∥⟨5,2,−5⟩∥=√25+4+25=√54
The modulus of vecC→C= ∥〈-1,-3,-14〉∥=sqrt(1+9+196)=sqrt206∥∥⟨−1,−3,−14⟩∥=√1+9+196=√206
So,
costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=59/(sqrt54*sqrt206)=0.56cosθ=→A.→C∥∥∥→A∥⋅∥→C∥∥∥=59√54⋅√206=0.56
theta=56θ=56º