If A = <5 ,2 ,-5 >A=<5,2,5>, B = <6 ,5 ,9 >B=<6,5,9> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Jul 6, 2017

The angle is =56=56º

Explanation:

Let's start by calculating

vecC=vecA-vecBC=AB

vecC=〈5,2,-5〉-〈6,5,9〉=〈-1,-3,-14〉C=5,2,56,5,9=1,3,14

The angle between vecAA and vecCC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costhetaA.C=ACcosθ

Where thetaθ is the angle between vecAA and vecCC

The dot product is

vecA.vecC=〈5,2,-5〉.〈-1,-3,-14〉=-5-6+70=59A.C=5,2,5.1,3,14=56+70=59

The modulus of vecAA= ∥〈5,2,-5〉∥=sqrt(25+4+25)=sqrt545,2,5=25+4+25=54

The modulus of vecCC= ∥〈-1,-3,-14〉∥=sqrt(1+9+196)=sqrt2061,3,14=1+9+196=206

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=59/(sqrt54*sqrt206)=0.56cosθ=A.CAC=5954206=0.56

theta=56θ=56º