If A = <5 ,2 ,8 >, B = <2 ,7 ,6 > and C=A-B, what is the angle between A and C?

2 Answers
Apr 7, 2018

The angle is =69.3^@

Explanation:

Start by calculating

vecC=vecA-vecB

vecC=〈5,2,8〉-〈2,7,6〉=〈3,-5,2〉

The angle between vecA and vecC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costheta

Where theta is the angle between vecA and vecC

The dot product is

vecA.vecC=〈5,2,8〉.〈3,-5,2〉=15-10+16=21

The modulus of vecA= ∥〈5,2,8〉∥=sqrt(25+4+64)=sqrt93

The modulus of vecC= ∥〈3,-5,2〉∥=sqrt(9+25+4)=sqrt38

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=21/(sqrt93*sqrt38)=0.35

theta=arccos(0.35)=69.3^@

Apr 7, 2018

color(blue)(69.31^@ 2 d.p.

Explanation:

bbA=[(5),(2),(8)] \ \ \ \ \ bbB=[(2),(7),(6)]

bbC=bbA-bbB=[(5),(2),(8)]-[(2),(7),(6)]=[(5-2),(2-7),(8-6)]=[(3),(-5),(2)]

The angle between two vectors can be found using the Dot Product.

bba*bb(b)=||bba||*||bb(b)||*cos(theta)

cos(theta)=(bba*bb(b))/(||bba||*||bb(b)||)

We first find the magnitudes of bbA and bb(B)

This is given by the Distance Formula:

||bbv||=sqrt((v_1)^2+(v_2)^2+(v_3)^2)

Where v_1,v_2,v_3 are the components of the vector.

||bbA||=sqrt((5)^2+(2)^2+(8)^2)=sqrt(93)

||bbC||=sqrt((3)^2+(-5)^2+(2)^2)=sqrt(38)

Now the product of:

bbA*bbC

This is found by multiplying:

[(5),(2),(8)]*[(3),(-5),(2)]

For this we multiply corresponding components and the n sum these:

[(5),(2),(8)]*[(3),(-5),(2)]=[(5*3+2*-5+8*2)]=21

Using:

cos(theta)=(bba*bb(b))/(||bba||*||bb(b)||)

cos(theta)=(bbA*bbC)/(||bbA||*||bbC||)

cos(theta)=21/(sqrt(93)*sqrt(38))

theta=arccos(21/(sqrt(93)*sqrt(38)))~~69.313579120997

color(blue)(69.31^@ 2 d.p.

PLOT:

enter image source here