If A= <-5 ,3 ,-3 > and B= <2 ,2 ,-7 >, what is A*B -||A|| ||B||?
1 Answer
bb ul A * bb ul B - || bb ul A || \ || bb ul B || = 17 - sqrt(43)sqrt(57)
Explanation:
We have:
bb ul A = << -5, 3, -3 >> andbb ul B = << 2, 2, -7 >>
And so we compute the Scalar (or dot product):
bb ul A * bb ul B= << -5, 3, -3 >> * << 2, 2, -7 >>
\ \ \ \ \ \ \ \ \ = (-5)(2) + (3)(6) + (-3)(-7)
\ \ \ \ \ \ \ \ \ = -10 + 6 + 21
\ \ \ \ \ \ \ \ \ = 17
And we compute the vector norms (or magnitudes):
|| bb ul A || = || << -5, 3, -3 >> ||
\ \ \ \ \ \ \ = sqrt( << -5, 3, -3 >> * << -5, 3, -3 >> )
\ \ \ \ \ \ \ = sqrt( (-5)^2+ (3)^2 + (-3)^2 )
\ \ \ \ \ \ \ = sqrt( 25 + 9 + 9)
\ \ \ \ \ \ \ = sqrt( 43 )
Similarly,
|| bb ul B || = || << 2, 2, -7 >> ||
\ \ \ \ \ \ \ = sqrt( << 2, 2, -7 >> * << 2, 2, -7 >> )
\ \ \ \ \ \ \ = sqrt( (2)^2+ (2)^2 + (-7)^2 )
\ \ \ \ \ \ \ = sqrt( 4+4+49)
\ \ \ \ \ \ \ = sqrt( 57 )
So that:
bb ul A * bb ul B - || bb ul A || \ || bb ul B || = 17 - sqrt(43)sqrt(57)