If A = <5 ,4 ,3 >A=<5,4,3>, B = <2 ,-7 ,5 >B=<2,7,5> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Nov 12, 2016

The angle is 49.649.6º

Explanation:

Let's start by calculating vecC=vecA-vecB=〈5,4,3〉-〈2,-7,5〉C=AB=5,4,32,7,5

vecC=〈3,11,-2〉C=3,11,2

To calculate the angle, we use the dot productt definition,

vecA.vecC=∥〈5,4,3〉∥*∥〈3,11,-2〉∥*costhetaA.C=5,4,33,11,2cosθ
where thetaθ is the angle between the 2 vectors

vecA.vecC=〈5,4,3〉.〈3,11,-2〉=15+44-6=53A.C=5,4,3.3,11,2=15+446=53

Modulus of vecA=∥〈5,4,3〉∥=sqrt(25+16+9)=sqrt50A=5,4,3=25+16+9=50

Modulus of vecC=∥〈3,11,-2〉∥=sqrt(9+121+4)=sqrt134C=3,11,2=9+121+4=134

:. cos theta=53/(sqrt50*sqrt134=0.65

theta=49.6º