If A = <5 ,6 ,-3 >A=<5,6,3>, B = <-9 ,6 ,-5 >B=<9,6,5> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Nov 14, 2016

The angle is =57.3=57.3º

Explanation:

Let's start calculating vecCC

vecC=vecA-VecB=〈5,6,-3〉-〈-9,6,-5〉C=AVecB=5,6,39,6,5
=〈14,0,2〉=14,0,2

To calculate the angle thetaθ between vecAA and vecCC,
we use the dot product definition:

vecA.vecC=∥vecA∥*∥vecC∥costhetaA.C=ACcosθ

The dot product =〈5,6,-3〉.〈14,0,2〉=70+0-6=64=5,6,3.14,0,2=70+06=64

The modulus of vecA=∥〈5,6,-3〉∥=sqrt(25+36+9)=sqrt70A=5,6,3=25+36+9=70

The modulus of vecC=∥〈14,0,2〉∥=sqrt(196+0+4)=sqrt200C=14,0,2=196+0+4=200

:. cos theta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=64/(sqrt70sqrt200)

costheta=0.54

theta=57.3º