If a=5 and c=9, how do you find b?
1 Answer
Oct 8, 2015
Assuming you are speaking of the lengths of the sides of a right-angled triangle:
b = sqrt(c^2-a^2) = sqrt(81-25) = sqrt(56) = 2 sqrt(14)b=√c2−a2=√81−25=√56=2√14
Explanation:
Pythagoras theorem tells us:
Subtract
b^2 = c^2 - a^2b2=c2−a2
Then take the (positive) square root of both sides to get:
b = sqrt(c^2 - a^2)b=√c2−a2
In our case,
b = sqrt(9^2 - 5^2) = sqrt(81 - 25) = sqrt(56)b=√92−52=√81−25=√56
= sqrt(2^2 * 14) = sqrt(2^2)*sqrt(14) = 2 sqrt(14)=√22⋅14=√22⋅√14=2√14
~~ 7.4833≈7.4833