If A = <6 ,6 ,-3 >A=<6,6,3>, B = <-9 ,6 ,-2 >B=<9,6,2> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Nov 26, 2016

The angle is =46.6=46.6º

Explanation:

Let's calculate vecCC

vecC=vecA-vecBC=AB

vec C=〈6,6,-3〉-〈-9,6,-2〉=〈15,0,-1〉C=6,6,39,6,2=15,0,1

To calculate the angle thetaθ between 2 vectors, we use the dot product definition

vecA.vecC=∥vecA∥*vecC∥costhetaA.C=ACcosθ

The dot product is =〈6,6,-3〉.〈15,0,-1〉=90+0+3=93=6,6,3.15,0,1=90+0+3=93

The modulus of vecA=∥〈6,6,-3〉∥=sqrt(36+36+9)=sqrt81=9A=6,6,3=36+36+9=81=9

The modulus of vecC=∥〈15,0,-1〉∥=sqrt(225+1)=sqrt226C=15,0,1=225+1=226

So, costheta=93/(9sqrt226)=0.69cosθ=939226=0.69

And theta=46.6θ=46.6º