If A= <6 ,9 ,-1 >A=<6,9,1> and B= <-4 ,-1 ,4 >B=<4,1,4>, what is A*B -||A|| ||B||AB||A||||B||?

1 Answer
Jan 7, 2016

62.40162.401.

Explanation:

Definitions : Let A=(a_1,a_2,....,a_n) and B=(b_1,b_2,....,b_n) be any 2 vectors in a real or complex finite dimensional vector space X. Then we define:

  1. The Euclidean inner product (dot product) of A and B as the real or complex number given by A*B= a_1b_1+a_2b_2+......+a_nb_n.
  2. The norm of A as the real or complex number given by ||A||=sqrt(a_1^2+a_2^2+......+a_n^2).

Applying these 2 definitions to the given 3 dimensional vectors we get :

A*B=(6,9,-1)*(-4,-1,4)

=(6xx-4)+(9xx-1)+(-1xx4)

=-24-9-4

=-37.

||A||=|| (6,9,-1) || = sqrt(6^2+9^2+1^2)=sqrt118.

Similarly ||B||= sqrt33.

therefore A*B-||A|| ||B|| = -37-(sqrt118)(sqrt33)

=-37-sqrt(118xx33)

=62.401.