If A= <7 ,-2 ,1 > and B= <-2 ,5 ,7 >, what is A*B -||A|| ||B||?
1 Answer
bb(ul A) bb( * ) bb(ul B) - || bb(ul A) || \ || bb(ul B) || = -17-18sqrt(13)
Explanation:
We have:
bb(ul A) = << 7, -2, 1 >>
bb(ul B) = << -2, 5, 7 >>
So then the scalar product (or dot product) is:
bb(ul A) bb( * ) bb(ul B) = << 7, -2, 1 >> bb( * ) << -2, 5, 7 >>
\ \ \ \ \ \ \ \ \ = (7)(-2) + (-2)(5) + (1)(7)
\ \ \ \ \ \ \ \ \ = -14 - 10 + 7
\ \ \ \ \ \ \ \ \ = -17
And the moduli of the vectors are:
|| bb(ul A) || = sqrt( (7)^2 + (-2)^2 + (1)^2 )
\ \ \ \ \ \ \ = sqrt(49+4+1)
\ \ \ \ \ \ \ = sqrt(54)
|| bb(ul B) || = sqrt( (-2)^2 + (5)^2 + (7)^2 ) =
\ \ \ \ \ \ \ = sqrt(4+25+49)
\ \ \ \ \ \ \ = sqrt(78)
And so:
bb(ul A) bb( * ) bb(ul B) - || bb(ul A) || \ || bb(ul B) || = -17-sqrt(54)sqrt(78)
" " = -17-sqrt(4212)
" " = -17-18sqrt(13)