If A=<7,3,6>, B=<4,7,5> and C=AB, what is the angle between A and C?

1 Answer
Mar 24, 2016

α27,04o

Explanation:

there are five steps:
1.find A-B=C
2.find dot product A.B
3.find ||A|| (magnitude of A)
4.find ||B|| (magnitude of C)
5.use A.C=||A||||C||cosα formula

Step1:
A=<7,3,6> B<4,7,5>
C=AB
Cx=AxBx=74 ; Cx=3
Cy=AyBy=7+3=4 ; Cy=4
Cz=AzBz=6+5=11 ; Cz=11
C=<3,4,11>
Step-2:
now let's find the dot product of A.C
A.C=AxCx+AyCy+AzCz
A.C=73+(3)(4)+6.11
A.C=21+12+66
A.C=99
let's find the magnitude of A and C
Step-3:
||A||=A2x+A2y+A2z ||A||=72+(3)2+62

||A||=49+9+36 ||A||=94
Step-4:
||C||=C2x+C2y+C2z ||C||=32+(4)2+112
||C||=9+16+121 ||C||=146

now,let's use dot product formula
Step-5:
A.C=||A||||C||cosα
A.C=99
||A||=94
||C||=146

99=94146cosα
99=94146cosα
99=111,15cosα
cosα=99111,15=0,8906882591
α27,04o