If A = <7 ,-5 ,6 >A=<7,5,6>, B = <4 ,4 ,9 >B=<4,4,9> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Dec 13, 2016

The angle is =62.6=62.6º

Explanation:

We start by calculating vecCC

vecC=vecA-vecBC=AB

=〈7,-5,6〉-〈4,4,9〉=〈3,-9,-3〉=7,5,64,4,9=3,9,3

The angle between 2 vectors is given by the dot product.

vecA.vecC=∥vecA∥*∥vecC∥*costhetaA.C=ACcosθ

The dot product is 〈7,-5,6〉.〈3,-9,-3〉=21+45-18=487,5,6.3,9,3=21+4518=48

The modulus of vecA=∥〈7,-5,6〉∥=sqrt(49+25+36)=sqrt110A=7,5,6=49+25+36=110

The modulus of vecC=∥〈3,-9,-3〉∥=sqrt(9+81+9)=sqrt99C=3,9,3=9+81+9=99

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)cosθ=A.CAC

=48/(sqrt110sqrt99)=0.46=4811099=0.46

theta=62.6θ=62.6º