If A = <8 ,0 ,4 >A=<8,0,4>, B = <6 ,5 ,4 >B=<6,5,4> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Feb 11, 2017

The angle is =70.6=70.6º

Explanation:

Let's start by calculating

vecC=vecA-vecBC=AB

vecC=〈8,0,4〉-〈6,5,4〉=〈2,-5,0〉C=8,0,46,5,4=2,5,0

The angle between vecAA and vecCC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costhetaA.C=ACcosθ

Where thetaθ is the angle between vecAA and vecCC

The dot product is

vecA.vecC=〈8,0,4〉.〈2,-5,0〉=16+0+0=16A.C=8,0,4.2,5,0=16+0+0=16

The modulus of vecAA= ∥〈8,0,4〉∥=sqrt(64+0+16)=sqrt808,0,4=64+0+16=80

The modulus of vecCC= ∥〈2,-5,0〉∥=sqrt(4+25+0)=sqrt292,5,0=4+25+0=29

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=16/(sqrt80*sqrt29)=0.332cosθ=A.CAC=168029=0.332

theta=70.6θ=70.6º