If A = <8 ,1 ,-5 >A=<8,1,5>, B = <6 ,-2 ,4 >B=<6,2,4>, and C=A-BC=AB, what is the angle between A and C?

1 Answer
Jan 5, 2017

The answer is =45.9=45.9º

Explanation:

Let's start by calculating

vecC=vecA-vecBC=AB

vecC=〈8,1,-5〉-〈6,-2,4〉=〈2,3,-9〉C=8,1,56,2,4=2,3,9

The angle between vecAA and vecCC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costhetaA.C=ACcosθ

Where thetaθ is the angle between vecAA and vecCC

The dot product is

vecA.vecC=〈8,1,-5〉.〈2,3,-9〉=16+3+45=64A.C=8,1,5.2,3,9=16+3+45=64

The modulus of vecAA= ∥〈8,1,-5〉∥=sqrt(64+1+25)=sqrt908,1,5=64+1+25=90

The modulus of vecCC= ∥〈2,3,-9〉∥=sqrt(4+9+81)=sqrt942,3,9=4+9+81=94

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=64/(sqrt90*sqrt94)=0.696cosθ=A.CAC=649094=0.696

theta=45.9θ=45.9º