If veca = <8 ,1 ,-5 >, vecb = <6 ,-2 ,-8 > and vecc=veca-vecb, what is the angle between veca and vecc?
1 Answer
I get about
The angle between
\mathbf(vecacdotvecc = || veca ||cdot|| vecc || costheta)
Therefore, we will need to find
color(green)(veca - vecb)
= << 8,1,-5 >> - << 6,-2,-8 >>
= << 8-6, 1-(-2), -5-(-8) >>
= color(green)(<< 2,3,3 >> = vecc)
Next, the angle between
costheta = (vecacdotvecc)/(|| veca ||cdot|| vecc ||)
color(green)(theta = arccos((vecacdotvecc)/(|| veca ||cdot|| vecc ||)))
Afterwards, we do not yet know
color(green)(veca cdot vecc)
= << 8,1,-5 >> cdot << 2,3,3 >>
= 8*2 + 1*3 + -5*3
= 16 + 3 - 15 = color(green)(4)
And lastly, we'll need to know the product of the norms of
\mathbf(|| vecv || = sqrt(vecvcdotvecv)),
so we'll need to dot
color(green)(|| veca ||) = sqrt(veca cdot veca)
= sqrt(<< 8,1,-5 >>cdot<< 8,1,-5 >>)
= sqrt(8*8 + 1*1 + (-5)*(-5))
= sqrt(64 + 1 + 25)
= color(green)(sqrt(90))
And now for
color(green)(|| vecc ||) = sqrt(vecc cdot vecc)
= sqrt(<< 2,3,3 >>cdot<< 2,3,3 >>)
= sqrt(2*2 + 3*3 + 3*3)
= sqrt(4+9+9)
= color(green)(sqrt(22))
Finally, we can combine all this to get the angle between
color(blue)(theta) = arccos((vecacdotvecc)/(|| veca ||cdot|| vecc ||))
= arccos(4/(sqrt(90)*sqrt(22)))
= arccos(4/(3sqrt(10)*sqrt(22)))
= arccos(4/(3sqrt(220)))
= arccos(cancel(4)^(2)/(3*cancel(2)sqrt(55)))
= arccos(2/(3*sqrt(55)))
~~ color(blue)("1.48 rad") or aboutcolor(blue)(84.84^@) .
Indeed, that should be the answer, as we see the result here to be:
arccos(2/(3sqrt55)) .