If A = <8 ,3 ,2 >A=<8,3,2>, B = <6 ,-4 ,5 >B=<6,4,5>, and C=A-BC=AB, what is the angle between A and C?

1 Answer
Nov 7, 2016

The angle is 63.3º

Explanation:

The angle between two vectors is given by the dot product.
veca.vecc=∥veca∥*∥vecc∥costheta
where theta is the angle between the two vectors
vecc=veca-vecb=〈8,3,2〉-〈6,-4,5〉=〈2,7,-3〉
The dot product is veca.vecc=〈8,3,2〉.〈2,7,-3〉=16+21-6=31
The modulus of veca is =∥veca∥=∥〈8,3,2〉∥=sqrt(64+9+4)=sqrt77
The modulus of vecc is =∥vecc∥=∥〈2,7,-3〉∥=sqrt(4+49+9)=sqrt62

So costheta=31/(sqrt77*sqrt62)=0.449
theta=63.3º