If A= <8 ,-5 ,6 >A=<8,−5,6> and B= <7 ,1 ,0 >B=<7,1,0>, what is A*B -||A|| ||B||A⋅B−||A||||B||?
1 Answer
bb ul(A) * bb ul(B) - || bb ul(A) || \ || bb ul(B) || = 51 - 25sqrt(2)
Explanation:
We start with the vectors
bb ul(A) = << 8,-5,6 >>
bb ul(B) = << 7,1,0 >>
The dot (or scalar) product is given by:
bb ul(A) * bb ul(B) = << 8,-5,6 >> * << 7,1,0 >>
\ \ \ \ \ \ \ \ \ = (8)(7) + (-5)(1) + (6)(0)
\ \ \ \ \ \ \ \ \ = 56 -5 + 0
\ \ \ \ \ \ \ \ \ = 51
And the norms are given by:
|| bb ul(A) || = || << 8,-5,6 >> ||
\ \ \ \ \ \ \ = sqrt(8^2+(-5)^2+6^2)
\ \ \ \ \ \ \ = sqrt(64+25+36)
\ \ \ \ \ \ \ = sqrt(125)
\ \ \ \ \ \ \ = 5
|| bb ul(B) || = || << 7,1,0 >> ||
\ \ \ \ \ \ \ = sqrt(7^2+1^2+0^2)
\ \ \ \ \ \ \ = sqrt(49+1+0)
\ \ \ \ \ \ \ = sqrt(50)
\ \ \ \ \ \ \ = 5sqrt(2)
So then:
bb ul(A) * bb ul(B) - || bb ul(A) || \ || bb ul(B) || = 51 - 25sqrt(2)