If |hata-hatb|=sqrt2ˆaˆb=2 then calculate the value of |hata+sqrt3hatb|ˆa+3ˆb?

1 Answer
May 29, 2017

22

Explanation:

norm( hat a-hat b)^2=norm(hat a)^2-2 << hat a, hat b >> + norm(hat b)^2 =1-2 << hat a, hat b >>+1 = (sqrt2)^2=2ˆaˆb2=ˆa22ˆa,ˆb+ˆb2=12ˆa,ˆb+1=(2)2=2

so << hat a, hat b >> = 0ˆa,ˆb=0 the unit vectors are orthogonal.

Now

norm( hat a+sqrt3 hat b)^2 = norm( hat a)^2+2 sqrt3 << hat a, hat b >> + 3 norm(hat b)^2 = 1+2sqrt3 xx 0+3 = 4ˆa+3ˆb2=ˆa2+23ˆa,ˆb+3ˆb2=1+23×0+3=4

so

norm( hat a+sqrt3 hat b)=sqrt(4)=2ˆa+3ˆb=4=2

NOTE: << cdot, cdot >>, indicates the scalar product of two vectors.