If A+B+C=180, prove that cot2A+cot2B+cot2C1 ?

1 Answer
Oct 1, 2017

A+B+C=180

cot(A+B)=cot(180C)

cotAcotB1cotB+cotA=cotC

(cotAcotB1)=(cotB+cotA)cotC

(cotAcotB+cotBcotC+cotCcotA=1

Now

cot2A+cot2B+cot2C1

=cot2A+cot2B+cot2C(cotAcotB+cotBcotC+cotCcotA)

=12(2cot2A+2cot2B+2cot2C2cotAcotB2cotBcotC2cotCcotA)

=12[(cotAcotB)2+(cotBcotC)2+(cotCcotA)2]
This being sum of three squared quantities each of which is difference of two quantities. So this sum is 0

Hence

cot2A+cot2B+cot2C10

cot2A+cot2B+cot2C1