We are given:
sinA=-3/5sinA=−35
Squaring both sides:
sin^2A=9/25sin2A=925
Identity:
color(red)bb(sin^2x+cos^2x=1)sin2x+cos2x=1
i.e.
sin^2x=1-cos^2xsin2x=1−cos2x
Substituting this:
1-cos^2A=9/251−cos2A=925
cos^2A=16/25cos2A=1625
Taking roots:
cosA=+-(sqrt(16))/sqrt(25)=4/5cosA=±√16√25=45
Since we are in the IV quadrant we expect the cosine to be positive:
color(blue)(cosA=4/5cosA=45
For cosBcosB we use the same idea:
sinB=-1/3sinB=−13
sin^2B=1/9sin2B=19
1-cos^2B=1/91−cos2B=19
cos^2B=8/9cos2B=89
Taking roots:
cosB=+-(2sqrt(2))/3cosB=±2√23
Since we are in the IV quadrant we expect the cosine to be positive:
color(blue)(cosB=(2sqrt(2))/3)cosB=2√23
Using identity:
color(red)bb(tanx=sinx/cosx)tanx=sinxcosx
Find:
tanA and tanBtanAandtanB
tanA=sinA/cosA=(-3/5)/(4/5)=-3/4tanA=sinAcosA=−3545=−34
tanB=sinB/cosB=(-1/3)/((2sqrt(2))/3)=-1/(2sqrt(2))=-sqrt(2)/4tanB=sinBcosB=−132√23=−12√2=−√24
Identities:
color(red)bb(tan(A+B)=(tanA+tanB)/(1-tanAtanB))
color(red)bb(tan(A-B)=(tanA-tanB)/(1+tanAtanB))
:.
tan(A+B)=((-3/4)+(-sqrt(2)/4))/(1-(-3/4)(-sqrt(2)/4))=((-3-sqrt(2))/4)/((16-3sqrt(2))/16)->
=(-12-4sqrt(2))/(16-3sqrt(2))=color(blue)(-((12+4sqrt(2)))/(16-3sqrt(2)))
tan(A-B)=((-3/4)-(-sqrt(2)/4))/(1+(-3/4)(-sqrt(2)/4))=((-3+sqrt(2))/4)/((16+3sqrt(2))/16)->
=(-12+4sqrt(2))/(16+3sqrt(2))=color(blue)(-((12-4sqrt(2)))/(16+3sqrt(2))
.....................................................................................................................................
color(blue)(cosA=4/5
color(blue)(cosB=(2sqrt(2))/3)
color(blue)(tan(A+B)=-((12+4sqrt(2)))/(16-3sqrt(2)))
color(blue)(tan(A-B)=-((12-4sqrt(2)))/(16+3sqrt(2))