If A is an angle in QIV such that sin A = − 3 5 and B is an angle in QIV such that sin B = − 1 3 use identities to find COS A COS B TAN(A+B) TAN(A-B) ?

Let me clarify that it is -3/5 and -1/3

Thanks :)

1 Answer
Apr 13, 2018

See below.

Explanation:

We are given:

sinA=-3/5sinA=35

Squaring both sides:

sin^2A=9/25sin2A=925

Identity:

color(red)bb(sin^2x+cos^2x=1)sin2x+cos2x=1

i.e.

sin^2x=1-cos^2xsin2x=1cos2x

Substituting this:

1-cos^2A=9/251cos2A=925

cos^2A=16/25cos2A=1625

Taking roots:

cosA=+-(sqrt(16))/sqrt(25)=4/5cosA=±1625=45

Since we are in the IV quadrant we expect the cosine to be positive:

color(blue)(cosA=4/5cosA=45

For cosBcosB we use the same idea:

sinB=-1/3sinB=13

sin^2B=1/9sin2B=19

1-cos^2B=1/91cos2B=19

cos^2B=8/9cos2B=89

Taking roots:

cosB=+-(2sqrt(2))/3cosB=±223

Since we are in the IV quadrant we expect the cosine to be positive:

color(blue)(cosB=(2sqrt(2))/3)cosB=223

Using identity:

color(red)bb(tanx=sinx/cosx)tanx=sinxcosx

Find:

tanA and tanBtanAandtanB

tanA=sinA/cosA=(-3/5)/(4/5)=-3/4tanA=sinAcosA=3545=34

tanB=sinB/cosB=(-1/3)/((2sqrt(2))/3)=-1/(2sqrt(2))=-sqrt(2)/4tanB=sinBcosB=13223=122=24

Identities:

color(red)bb(tan(A+B)=(tanA+tanB)/(1-tanAtanB))

color(red)bb(tan(A-B)=(tanA-tanB)/(1+tanAtanB))

:.

tan(A+B)=((-3/4)+(-sqrt(2)/4))/(1-(-3/4)(-sqrt(2)/4))=((-3-sqrt(2))/4)/((16-3sqrt(2))/16)->

=(-12-4sqrt(2))/(16-3sqrt(2))=color(blue)(-((12+4sqrt(2)))/(16-3sqrt(2)))

tan(A-B)=((-3/4)-(-sqrt(2)/4))/(1+(-3/4)(-sqrt(2)/4))=((-3+sqrt(2))/4)/((16+3sqrt(2))/16)->

=(-12+4sqrt(2))/(16+3sqrt(2))=color(blue)(-((12-4sqrt(2)))/(16+3sqrt(2))

.....................................................................................................................................

color(blue)(cosA=4/5

color(blue)(cosB=(2sqrt(2))/3)

color(blue)(tan(A+B)=-((12+4sqrt(2)))/(16-3sqrt(2)))

color(blue)(tan(A-B)=-((12-4sqrt(2)))/(16+3sqrt(2))