If a projectile is shot at an angle of (3pi)/83π8 and at a velocity of 2m/s2ms, when will it reach its maximum height?

1 Answer
Jun 26, 2018

The time is =0.19s=0.19s

Explanation:

The initial speed is u=2ms^-1u=2ms1

The angle is theta=3/8piradθ=38πrad

The acceleration due to gravity is g=9.8ms^-2g=9.8ms2

The equation of the trajectory of the projectile is

y=xtantheta-(gx^2)/(2u^2cos^2theta)y=xtanθgx22u2cos2θ..............(1)(1)

At the maximum height

dy/dx=0dydx=0

=>, dy/dx=tantheta-(2gx)/(2u^2costheta)dydx=tanθ2gx2u2cosθ

=tantheta-(gx)/(u^2cos^2theta)=tanθgxu2cos2θ

Therefore,

tantheta-(gx)/(u^2cos^2theta)=0tanθgxu2cos2θ=0

x=(u^2tanthetacos^2theta)/(g)=u^2(sinthetacostheta)/gx=u2tanθcos2θg=u2sinθcosθg

The constant horizontal velocity is

v_x=ucosthetavx=ucosθ

Therefore,

The time to reach the greatest height is

t=x/v_x=(u^2(sinthetacostheta)/g)*1/(ucostheta)t=xvx=(u2sinθcosθg)1ucosθ

=(usintheta)/g=usinθg

=2*sin(3/8pi)/9.8=2sin(38π)9.8

=0.19s=0.19s