If ¯u, ¯v, and ¯¯¯w are linearly independent vectors, find the values of t?

(t2t2)¯u+(2t23t2)¯v+(3t25t2)¯¯¯w=0

1 Answer
May 11, 2018

t=2

Explanation:

If these vectors are linearly independent, then:

αu+βv+γw=0α,β,γ=0

Or in this case:

  • α(t),β(t),γ(t)=0

Factoring:

  • α(t)=t2t2=(t2)(t+1)

  • β(t)=2t23t2=(t2)(2t+1)

  • γ(t)=3t25t2=(t2)(3t+1)

t=2