If c is the measure of the hypotenuse of a right triangle, how do you find each missing measure given a=x, b=x+41, c=85?

1 Answer
Mar 7, 2017

36 & 77

Explanation:

We know, In a right triangle, hypotenuse^2 = base^2+height^2

Here, c^2 = a^2 + b^2

rArr 85^2 = x^2 + (x+41)^2

rArr 7225 = x^2+x^2+82x+1681

rArr 2x^2+82x+1681-7225=0

rArr 2x^2 + 82x - 5544=0#

rArr 2(x^2+41x-2772)=0

rArr x^2+41x-2772 = 0

rArr x^2+77x-36x-2772 = 0

rArr x(x+77)-36(x+77)=0

rArr (x-36)(x+77)=0

rArr x = 36 & -77 [x != -77]

Hence a = 36 & b = 36+41 = 77