If c is the measure of the hypotenuse of a right triangle, how do you find each missing measure given a=x-32, b=x-1, c=x?

1 Answer
Jan 25, 2017

a=9, b=40, c=41a=9,b=40,c=41

Explanation:

c^2=a^2+b^2c2=a2+b2
x^2=(x-32)^2+(x-1)^2x2=(x32)2+(x1)2
x^2=x^2-64x+1024+x^2-2x+1x2=x264x+1024+x22x+1
x^2=2x^2-66x+1025x2=2x266x+1025
0=x^2-66x+10250=x266x+1025
0=(x-25)(x-41)0=(x25)(x41)

x=25 and 41x=25and41
Since the unit of length cannot be -ve, then x=41x=41 only
e.g, a=x-32a=x32, if we take x=25, a=-7x=25,a=7(-ve value).

Therefore,
a=41-32=9, b=41-1=40, c=41a=4132=9,b=411=40,c=41