If cosx=2/5, how do you find sin2x? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer ali ergin Jul 30, 2016 sin 2x=2/5 sqrt(3/5) Explanation: cos x=2/5" ; "sin 2x=? sin2x=sin x*cos x+cos x*sin x sin 2x=2*sin x*cos x "so ;" sin x=sqrt(1-cos^2 x) "we can write as ;" sin 2x=sqrt (1-cos^2 x)*cos x sin 2x=sqrt(1-2/5)*2/5 sin 2x=sqrt((5-2)/5)*2/5 sin 2x=sqrt(3/5)*2/5 sin 2x=2/5 sqrt(3/5) Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for sin 2x = cos x for the interval [0,2pi]? How do you find all solutions for 4sinthetacostheta=sqrt(3) for the interval [0,2pi]? How do you simplify cosx(2sinx + cosx)-sin^2x? If tan x = 0.3, then how do you find tan 2x? If sin x= 5/3, what is the sin 2x equal to? How do you prove cos2A = 2cos^2 A - 1? See all questions in Double Angle Identities Impact of this question 10988 views around the world You can reuse this answer Creative Commons License