We need
(u/v)'=(u'v-uv')/(v^2)
Calculate the first and second derivatives
Let f(x)=e^x/(5+e^x)
u(x)=e^x, =>, u'(x)=e^x
v(x)=5+e^x, =>, v'(x)=e^x
Therefore,
f'(x)=(e^x(5+e^x)-e^x*e^x)/(5+e^x)^2=(5e^x)/(5+e^x)^2
AA x in RR, |, f'(x)>0
No critical points.
Therefore,
The sign chart is
color(white)(aaaa)Intervalcolor(white)(aaaa)(-oo,+oo)
color(white)(aaaa)sign f'(x)color(white)(aaaaaaaa)+
color(white)(aaaaaaa) f(x)color(white)(aaaaaaaaaa)↗
Now, calculate the second derivative
u(x)=5e^x, =>, u'(x)=5e^x
v(x)=(5+e^x)^2, =>, v'(x)=2e^x(5+e^x)
f''(x)=(5e^x(5+e^x)^2-5e^x(2e^x(5+e^x)))/(5+e^x)^4
=(25e^x+5e^(2x)-10e^(2x))/((5+e^x)^3)
=(25e^x-5e^(2x))/(((5+e^x)^3))
=(5e^x(5-e^(x)))/(((5+e^x)^3))
The point of inflection is when f''(x)=0
=>, 5-e^x=0, x=ln5
We can make the chart
color(white)(aaaa)Intervalcolor(white)(aaaa)(-oo,ln5)color(white)(aaaa)(ln5,+oo)
color(white)(aaaa)sign f''(x)color(white)(aaaaaa)+color(white)(aaaaaaaaaaa)-
color(white)(aaaa) f(x)color(white)(aaaaaaaaaaaa)uucolor(white)(aaaaaaaaaaa)nn
See the graph of the function
graph{e^x/(5+e^x) [-8.89, 8.89, -4.444, 4.445]}