If #f(x) = 4x -2# and #g(x) = e^(-x^3-1)#, what is #f'(g(x)) #? Calculus Basic Differentiation Rules Chain Rule 1 Answer A. S. Adikesavan Apr 30, 2016 #12x^2e^(-x^3-1)=(12/e)x^2e^(-x^3)#. Explanation: #f(g(x)=4g(x)-1=4e^(-x^3-1)-2# Use #(e^u)'=(e^u)u'#. #f'(g(x)) =(4e^(-x^3-1)-2)'=4(e^(-x^3-1))'=4e^(-x^3-1)(-x^3-1)'=4e^(-x^3-1)(3x^2)=(12/e)x^2e^(-x^3)# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1368 views around the world You can reuse this answer Creative Commons License