If #f(x) =sin^3x # and #g(x) = sqrt(3x-1 #, what is #f'(g(x)) #? Calculus Basic Differentiation Rules Chain Rule 1 Answer Jim S May 7, 2018 #f(x)=sin^3x# , #D_f=RR# #g(x)=sqrt(3x-1)#, #Dg=[1/3,+oo)# #D_(fog)={##AAx##in##RR:##x##in##D_g#, #g(x)##in##D_f}# #x>=1/3# , #sqrt(3x-1)##in##RR# #-># #x##in##[1/3,+oo)# #AAx##in##[1/3,+oo)#, #(fog)'(x)=f'(g(x))g'(x)=f'(sqrt(3x-1))((3x-1)')/(2sqrt(3x-1))# #f'(x)=3sin^2x(sinx)'=3sin^2xcosx# so #(fog)'(x)=sin^2(sqrt(3x-1))cos(sqrt(3x-1))*9/(2sqrt(3x-1))# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 2217 views around the world You can reuse this answer Creative Commons License