If #psi=A(x)e^(itheta(x))#where #A(x) and theta(x)# are real functions prove that the probability current #J(x,t) = |A(x)|^2(ℏ/m)d/(dx)(theta(x))#.?
Calculate the current in a region where the wavefunction is given by #Be^(αx)+Ce^(−αx)# , where α is a real constant and B, C are complex numbers, i.e. B, C are not position-dependent. Is it correct to say that since #e^(+-αx)# are real functions, the current inside the barrier must be zero? Find a condition on B and C such that the current vanishes.
e)#[hatK,J^(T)] =+sJ^(T)#
iii. Suppose #Kϕ_k = kϕ_k# .
Show that #(Jϕ_ k)# is an eigenfunction of K with eigenvalue
#(k − s)# .
T indicates the hermitian adjoint of #J# Attempt at first question
#psi$d/(dx)psi = Ae^(itheta)itheta'Ae^(itheta)=itheta'A"*"A#
Ive used $ to indicate complex conjugate at some places because the #"*# would ruin the formatting
#psid/(dx)psi$ = -itheta'A"*"A#
#j(x,t) =(ih)/(2m) * -2itheta'A"*"A#
#=|A(x)|^2h/md/(dx)(theta(x))#
but i know that this can be wrong as the derivative of #e^(itheta)# cannot be #itheta'e^(itheta)# but this is the only way i found out
Second question
#psid/(dx)Be^(alphax)+Ce^(-alphax)=(alphaBB$ - alphaC C $)#
#psid/(dx)Be^(-alphax)+Ce^(alphax)= -alphaBB$+alphaC C$#
then #j(x,t)=(ih)/(2m)(-alphaBB$+alphaC C$ -alphaBB$-alphaC C$)#
#-ibarhaBB$ + ibarhaC C$#
if we want the current to vanish
#-ibarhaBB$ = -ibarhaC C$#
#BB$ =C C$#
#B=C#
Calculate the current in a region where the wavefunction is given by
e)
iii. Suppose
Show that
#(Jϕ_ k)# is an eigenfunction of K with eigenvalue
#(k − s)# .
T indicates the hermitian adjoint of
Ive used $ to indicate complex conjugate at some places because the
but i know that this can be wrong as the derivative of
Second question
then
if we want the current to vanish
1 Answer
I'm only going to answer the first two questions because that's all you tried...
For a given
#-(iℏ)/(2m) (Psi^"*" (del Psi)/(delx) - Psi (delPsi^"*")/(delx))#
If some
#color(blue)(j(x,t)) = -(iℏ)/(2m) (A(x)e^(-itheta(x)) cancel(e^(iEt//ℏ)) cdot [i(d theta(x))/(dx)A(x)e^(itheta(x)) + (dA(x))/(dx)e^(itheta(x))]cancel(e^(-iEt//ℏ)) - A(x)e^(itheta(x)) cancel(e^(-iEt//ℏ)) cdot [-i(d theta(x))/(dx)A(x)e^(-itheta(x)) + (dA(x))/(dx)e^(-itheta(x))]cancel(e^(iEt//ℏ)))#
Distribute in the
#= -(iℏ)/(2m) ([i(d theta(x))/(dx)|A(x)|^2cancel(e^(-itheta(x))e^(itheta(x))) + (dA(x))/(dx)A(x)cancel(e^(-itheta(x))e^(itheta(x)))] - [-i(d theta(x))/(dx)|A(x)|^2 cancel(e^(itheta(x))e^(-itheta(x))) + (dA(x))/(dx)A(x)cancel(e^(itheta(x))e^(-itheta(x)))])#
Cancel some terms...
#= -(iℏ)/(2m) (i(d theta(x))/(dx)|A(x)|^2 + cancel((dA(x))/(dx)A(x)) + i(d theta(x))/(dx)|A(x)|^2 - cancel((dA(x))/(dx)A(x)))#
#= -(iℏ)/(2m) (2i(d theta(x))/(dx)|A(x)|^2)#
#= color(blue)((ℏ)/(m) |A(x)|^2(d theta(x))/(dx))#
From your wording, you're doing a tunnelling problem where
#psi(x) = Be^(alphax) + Ce^(-alphax)#
#Psi(x,t) = [Be^(alphax) + Ce^(-alphax)]e^(-iEt//ℏ)# where
#alpha = sqrt((2m(V_0-E))/ℏ^2)# ,#V_0 > E# .
As a result,
The probability current result from before has to be modified, because
#color(blue)(j(x,t)) = -(iℏ)/(2m) [(B^"*"e^(alphax) + C^"*"e^(-alphax))e^(iEt//ℏ)(alphaBe^(alphax) - alphaCe^(-alphax))e^(-iEt//ℏ) - (Be^(alphax) + Ce^(-alphax))e^(-iEt//ℏ)(alphaB^"*"e^(alphax) - alphaC^"*"e^(-alphax))e^(iEt//ℏ)]#
#= -(iℏ)/(2m) [cancel(alphaBB^"*"e^(2alphax)) - alphaB^"*"C + alphaBC^"*" - cancel(alphaC C^"*"e^(-2alphax)) - cancel(alphaBB^"*"e^(2alphax)) + alphaBC^"*" - alphaB^"*"C + cancel(alphaC C^"*"e^(-2alphax))]#
#= -(iℏ)/(2m) [ - alphaB^"*"C + alphaBC^"*" + alphaBC^"*" - alphaB^"*"C]#
#= -(iℏ)/(2m) [2 alpha (BC^"*" - B^"*"C)]#
#= color(blue)(-(ialphaℏ)/(m) [BC^"*" - B^"*"C])#
The time-dependent part (
#B/(B^"*") = C/(C^"*")#
And one choice for this is if
If
If we have
#R = (C C^"*")/(BB^"*") = 1#
Or if we went with the condition of