If sin(theta)+cos(theta)=(sqrt2) sin(90^@-theta),find tan(theta)?

1 Answer
Aug 16, 2017

tan(theta)=sqrt2 -1

Explanation:

Given: sin(theta)+cos(theta)=(sqrt2) sin(90^@-theta)

Use the identitity sin(A-B) = sin(A)cos(B)-cos(A)sin(B) where A = 90^@ and B = theta

sin(theta)+cos(theta)=(sqrt2)(sin(90^@)cos(theta)-cos(90^@)sin(theta))

Use the facts that sin(90^@) = 1 and cos(90^@)=0

sin(theta)+cos(theta)=(sqrt2)cos(theta)

Divide both sides of the equation by cos(theta):

sin(theta)/cos(theta)+ 1=sqrt2

Use the identity sin(theta)/cos(theta) = tan(theta)

tan(theta)+ 1=sqrt2

Subtract 1 from both sides:

tan(theta)=sqrt2 -1