If #sin(theta)+cos(theta)=(sqrt2) sin(90^@-theta)#,find #tan(theta)#?

1 Answer
Aug 16, 2017

#tan(theta)=sqrt2 -1#

Explanation:

Given: #sin(theta)+cos(theta)=(sqrt2) sin(90^@-theta)#

Use the identitity #sin(A-B) = sin(A)cos(B)-cos(A)sin(B)# where #A = 90^@# and #B = theta#

#sin(theta)+cos(theta)=(sqrt2)(sin(90^@)cos(theta)-cos(90^@)sin(theta))#

Use the facts that #sin(90^@) = 1 and cos(90^@)=0#

#sin(theta)+cos(theta)=(sqrt2)cos(theta)#

Divide both sides of the equation by #cos(theta)#:

#sin(theta)/cos(theta)+ 1=sqrt2#

Use the identity #sin(theta)/cos(theta) = tan(theta)#

#tan(theta)+ 1=sqrt2#

Subtract 1 from both sides:

#tan(theta)=sqrt2 -1#