If #sinA+sinB=x# and #cosA+cosB=y# then show that #tan((A-B)/2)=+-sqrt((4-x^2-y^2)/(x^2+y^2))#?
2 Answers
See the answer below...
Explanation:
#sinA+sinB=x#
#=>2 cdot sin((A+B)/2)cdot cos((A-B)/2)=x" "...(1)#
#cosA+cosB=y#
#=>2cdot cos((A+B)/2) cdot cos((A-B)/2)=y" "...(2)# Now, we have to remove the term of sine and cosine value of
#" "((A+B)/2)" "# to get the value of#tan((A-B)/2)# .From 1st equation,
#=>4 cdot sin^2((A+B)/2)cdot cos^2((A-B)/2)=x^2#
#=>4 cdot cos^2((A-B)/2)cdot {1-cos^2((A+B)/2)}=x^2" "...(3)# Similarly, from 2nd equation,
#=>4 cdot cos^2((A+B)/2) cdot cos^2((A-B)/2)=y^2#
#=>4 cdot cos^2((A+B)/2) cdot cos^2((A-B)/2)=y^2" "...(4)# From 3rd and 4th equation, we get
#=>4 cdot cos^2((A-B)/2)cdot {1-y^2/(4 cdot cos^2((A-B)/2)}}=x^2#
#=>4 cdot cos^2((A-B)/2)-y^2 =x^2#
#=>4 cdot cos^2((A-B)/2) =x^2+y^2#
#=>cos^2((A-B)/2)=(x^2+y^2)/4#
#=>sec^2((A-B)/2)=4/(x^2+y^2)#
#=>1+tan^2((A-B)/2)=4/(x^2+y^2)#
#=>tan^2((A-B)/2)=4/(x^2+y^2)-1#
#=>tan^2((A-B)/2)=(4-x^2-y^2)/(x^2+y^2)#
#=>tan((A-B)/2)=+-sqrt((4-x^2-y^2)/(x^2+y^2)# Hope it helps..
Thank you...
Proof is done considering squaring both the sides, and verified
Explanation:
Given:
To show that:
Squaring both sides,
RHS
=LHS
Hence, proved