If sinx+siny=asinx+siny=a and cosx+cosy=bcosx+cosy=b how do you find x,yx,y ?

2 Answers
Aug 30, 2016

Given

sinx+siny=a......(1)

cosx+cosy=b.....(2)

Squaring and adding (1) and (2)

cos^2x+sin^2x+cos^2y+sin^2y+2cosxcosy+2sinxsiny=a^2+b^2

=>2+2cos(x-y)=a^2+b^2

=>2cos(x-y)=a^2+b^2-2

=>x-y=cos^-1((a^2+b^2-2)/2)......(3)

Dividing (1) by (2)

(sinx+siny)/(cosx+cosy)=a/b

=>(2sin((x+y)/2)cos((x-y)/2))/ (2cos((x+y)/2)cos((x-y)/2))=a/b

=>tan((x+y)/2)=a/b

=>(x+y)/2=tan^-1(a/b)

=>(x+y)=2tan^-1(a/b).......(4)

Adding (3) & (4)

=>2x=cos^-1((a^2+b^2-2)/2)+2tan^-1(a/b)

=>x
=tan^-1(a/b) +1/2cos^-1((a^2+b^2-2)/2)

Subtracting (3) from (4)

=>2y
=2tan^-1(a/b)-cos^-1((a^2+b^2-2)/2)

=>y
=tan^-1(a/b)-1/2cos^-1((a^2+b^2-2)/2)

Aug 30, 2016

y = arcsin(1/2 (a + abs(b)sqrt( 4 -(a^2 + b^2)))) and
x = arcsin(1/2 (a - abs(b)sqrt( 4 -(a^2 + b^2))))

Explanation:

Calling u = sin x and v = sin y we have

{ (u + v = a), (sqrt(1-u^2)+sqrt(1-v^2) = b) :}

or

{ (u + v = a), (sqrt(1-(a-v)^2)+sqrt(1-v^2) = b) :}

squaring the second equation

1-a^2-v^2-2av = b^2+1-v^2-2bsqrt(1-v^2)

or

2bsqrt(1-v^2) = b^2+a^2-2av

squaring again

4b^2(1-v^2)=(b^2+a^2)^2+4a^2v^2-4(a^2+b^2)av

and

4(a^2+b^2)v^2-4(a^2+b^2)av+(b^2+a^2)^2-4b^2=0

Solving for v we obtain

v = 1/2 (a pm abs(b)sqrt( 4 -(a^2 + b^2)))

and

u = a - v = 1/2 (a -(pm abs(b)sqrt( 4 -(a^2 + b^2))))

Finally

y = arcsin(1/2 (a + abs(b)sqrt( 4 -(a^2 + b^2)))) and
x = arcsin(1/2 (a - abs(b)sqrt( 4 -(a^2 + b^2))))