If #sqrt(1 - x^2) + sqrt(1 - y^2) = a(x - y)#. Then how will you prove that #dy/dx = sqrt[(1 - y^2)/(1 - x^2)]#??

1 Answer
Jul 24, 2017

Refer to the Explanation.

Explanation:

Observe that, #sqrt(1-x^2) and sqrt(1-y^2)# are Meaningful, iff,

#|x| le 1, and, |y| le 1...............(star^1).#

This means that, there is no Harm if we let,

#x=sintheta, and, y=sinphi....................(star^2).#

#:. sqrt(1-x^2)+sqrt(1-y^2)=a(x-y)," becomes, "#

# costheta+cosphi=a(sintheta-sinphi).#

#:.2cos((theta+phi)/2)cos((theta-phi)/2)=2a{cos((theta+phi)/2)sin((theta-phi)/2)}.#

#:.cos((theta-phi)/2)=asin((theta-phi)/2).#

# cot((theta-phi)/2)=a.#

# ((theta-phi)/2)=arc cota.#

#:. theta-phi=2arc cota.#

From, #(star^1), and, (star^2),# we have,

# arc sinx-arc siny=2arc cota.#

#:. d/dx{arc sinx-arc siny}=d/dx{2arc cota}.#

#:. 1/sqrt(1-x^2)-1/sqrt(1-y^2)*d/dx{y}=0,..."[The Chain Rule]."#

#:. 1/sqrt(1-x^2)-1/sqrt(1-y^2)*dy/dx=0.#

# :. dy/dx=sqrt(1-y^2)/sqrt(1-x^2).#

# rArr dy/dx=sqrt{(1-y^2)/(1-x^2)}.#

Enjoy Maths.!