If #sqrt2# lies between #(x+3)/x#and #(x+4)/(x+1)#, find the integral value of #x# ?

1 Answer
Jul 22, 2017

#x=7#

Explanation:

If #x>0#, we have #x(x+4)=x^2+4x# and #(x+3)(x+1)=x^2+4x+3#, we have

#(x+3)(x+1) > x(x+4)#

i.e. #(x+4)/(x+1) < sqrt2 < (x+3)/x#

Hence #x+4 < sqrt2x+sqrt2# i.e. #x(sqrt2-1)>4-sqrt2#

or #x>(4-sqrt2)/(sqrt2-1)#

and as #(4-sqrt2)/(sqrt2-1)=(4-sqrt2)/(sqrt2-1)xx(sqrt2+1)/(sqrt2+1)#

= #4-2+3sqrt2=2+4.2426=6.2426# i.e. #x>6.2426# (A)

Further, as #(x+3)/x > sqrt2#,

#(sqrt2-1)x <3# i.e. #x < 3/(sqrt2-1)#

or #x < 3sqrt2+3=7.2426# (B)

As such from (A) and (B), #6.2426 < x < 7.2426# and as #x# is an integer #x=7#