If sqrt22 lies between (x+3)/xx+3xand (x+4)/(x+1)x+4x+1, find the integral value of xx ?

1 Answer
Jul 22, 2017

x=7x=7

Explanation:

If x>0x>0, we have x(x+4)=x^2+4xx(x+4)=x2+4x and (x+3)(x+1)=x^2+4x+3(x+3)(x+1)=x2+4x+3, we have

(x+3)(x+1) > x(x+4)(x+3)(x+1)>x(x+4)

i.e. (x+4)/(x+1) < sqrt2 < (x+3)/xx+4x+1<2<x+3x

Hence x+4 < sqrt2x+sqrt2x+4<2x+2 i.e. x(sqrt2-1)>4-sqrt2x(21)>42

or x>(4-sqrt2)/(sqrt2-1)x>4221

and as (4-sqrt2)/(sqrt2-1)=(4-sqrt2)/(sqrt2-1)xx(sqrt2+1)/(sqrt2+1)4221=4221×2+12+1

= 4-2+3sqrt2=2+4.2426=6.242642+32=2+4.2426=6.2426 i.e. x>6.2426x>6.2426 (A)

Further, as (x+3)/x > sqrt2x+3x>2,

(sqrt2-1)x <3(21)x<3 i.e. x < 3/(sqrt2-1)x<321

or x < 3sqrt2+3=7.2426x<32+3=7.2426 (B)

As such from (A) and (B), 6.2426 < x < 7.24266.2426<x<7.2426 and as xx is an integer x=7x=7