If tanx =3/4, π < x <3 π /2, find the values of sin (x/2), cos (x/2) and tan (x/2)?

1 Answer
Sep 28, 2016

Given pi < x<(3pi)/2 and tanx=3/4

pi < x<(3pi)/2

=>pi/2 < x/2<(3pi)/4->x/2in " 2nd quadrant"

This means

sin(x/2)->+ve

cos(x/2)->-ve

tan(x/2)->-ve

Now tanx=3/4

=>(2tan(x/2))/(1-tan^2(x/2))=3/4

=>8tan(x/2)=3-3tan^2(x/2)

=>3tan^2(x/2)+8tan(x/2)-3=0

=>3tan^2(x/2)+9tan(x/2)-tan(x/2)-3=0

=>3tan(x/2)(tan(x/2)+3)-1(tan(x/2)+3)=0

=>(3tan(x/2)-1)(tan(x/2)+3)=0

This means

tan(x/2)=1/3->"not acceptable as "tan(x/2)->-ve

So tan(x/2)->-3

Now

cos(x/2)=1/sec(x/2)=-1/sqrt(1+tan^2(x/2)

=-1/sqrt(1+(-3)^2)=-1/sqrt10

Again

sin(x/2)=tan(x/2)xxcos(x/2)

=-3xx(-1/sqrt10)=3/sqrt10