Given pi < x<(3pi)/2 and tanx=3/4
pi < x<(3pi)/2
=>pi/2 < x/2<(3pi)/4->x/2in " 2nd quadrant"
This means
sin(x/2)->+ve
cos(x/2)->-ve
tan(x/2)->-ve
Now tanx=3/4
=>(2tan(x/2))/(1-tan^2(x/2))=3/4
=>8tan(x/2)=3-3tan^2(x/2)
=>3tan^2(x/2)+8tan(x/2)-3=0
=>3tan^2(x/2)+9tan(x/2)-tan(x/2)-3=0
=>3tan(x/2)(tan(x/2)+3)-1(tan(x/2)+3)=0
=>(3tan(x/2)-1)(tan(x/2)+3)=0
This means
tan(x/2)=1/3->"not acceptable as "tan(x/2)->-ve
So tan(x/2)->-3
Now
cos(x/2)=1/sec(x/2)=-1/sqrt(1+tan^2(x/2)
=-1/sqrt(1+(-3)^2)=-1/sqrt10
Again
sin(x/2)=tan(x/2)xxcos(x/2)
=-3xx(-1/sqrt10)=3/sqrt10