If tan theta + sec theta=x,then prove that sin theta =(x^2-1)/(x^2+1) ?

1 Answer
Aug 14, 2017

If tan theta + sec theta=x,then prove that sin theta =(x^2-1)/(x^2+1)

Given
tan theta + sec theta=x.....[1]

=>1/(sectheta+tantheta)=1/x

=>(sectheta-tantheta)/(sec^2theta-tan^2theta)=1/x

=>sectheta-tantheta=1/x....[2]

Adding [1] and [2] we get

2sectheta=x+1/x....[3]

Subtracting [2] from [1] we get

2tantheta=x-1/x....[4]

Dividing [4] by [3] we get

tantheta/sectheta=(x-1/x)/(x+1/x)

=>sintheta=(x^2-1)/(x^2+1)