If tan x=(-7)/24tanx=724 and cos x >0cosx>0, find all possible trigonometric ratios?

1 Answer
Apr 19, 2018

"see explanation"see explanation

Explanation:

"using the "color(blue)"trigonometric identities"using the trigonometric identities

•color(white)(x)tan^2x+1=sec^2xxtan2x+1=sec2x

rArrsecx=+-sqrt(tan^2x+1)secx=±tan2x+1

•color(white)(x)sin^2x+cos^2x=1xsin2x+cos2x=1

rArrsinx=+-sqrt(1-cos^2x)sinx=±1cos2x

"Given "tanx<0" and "cosx>0" then"Given tanx<0 and cosx>0 then

"x is in the fourth quadrant"x is in the fourth quadrant

tanx=-7/24rArrcotx=1/tanx=-24/7tanx=724cotx=1tanx=247

secx=+sqrt((-7/24)^2+1)secx=+(724)2+1

color(white)(secx)=sqrt(49/576+1)=sqrt(625/576)=25/24secx=49576+1=625576=2524

rArrcosx=1/secx=24/25cosx=1secx=2425

rArrsinx=-sqrt(1-(24/25)^2)sinx=1(2425)2

color(white)(rArrsinx)=-sqrt(1-576/625)=-sqrt(49/625)=-7/25sinx=1576625=49625=725

rArrcscx=1/sinx=-25/7cscx=1sinx=257