If #tan x=(-7)/24# and #cos x >0#, find all possible trigonometric ratios?
1 Answer
Apr 19, 2018
Explanation:
#"using the "color(blue)"trigonometric identities"#
#•color(white)(x)tan^2x+1=sec^2x#
#rArrsecx=+-sqrt(tan^2x+1)#
#•color(white)(x)sin^2x+cos^2x=1#
#rArrsinx=+-sqrt(1-cos^2x)#
#"Given "tanx<0" and "cosx>0" then"#
#"x is in the fourth quadrant"#
#tanx=-7/24rArrcotx=1/tanx=-24/7#
#secx=+sqrt((-7/24)^2+1)#
#color(white)(secx)=sqrt(49/576+1)=sqrt(625/576)=25/24#
#rArrcosx=1/secx=24/25#
#rArrsinx=-sqrt(1-(24/25)^2)#
#color(white)(rArrsinx)=-sqrt(1-576/625)=-sqrt(49/625)=-7/25#
#rArrcscx=1/sinx=-25/7#