If the function #f(x) = (1 - x)tan(pix/2)# is continuous at #x = 1#, then #f(1)# is ??
2 Answers
The function
Explanation:
If we want the function
to be continuous, we can find
The requirement for continuous at
# = lim_(xrarr1)sin((pix)/2)(1-x)/cos((pix)/2)#
# = lim_(xrarr1)sin((pix)/2) lim_(xrarr1)(1-x)/cos((pix)/2)#
The first limit is
# = (1) lim_(xrarr1)(-1)/(-pi/2 sin((pix)/2))#
# = 2/pi#
So, we need
Explanation:
For the given fun.
Let,