If" "veca=3hati+4hatj+5hatk and vec b= 2hati+hatj-4hatk a=3ˆi+4ˆj+5ˆkandb=2ˆi+ˆj4ˆk ;How will you find out the component of " "veca " ""perpendicular to" " " vecb a perpendicular to b?

1 Answer
Jun 3, 2016

vec a_T = 1/21{83 hat i,94 hat j, 65 hat k}aT=121{83ˆi,94ˆj,65ˆk}

Explanation:

Given two non null vectors vec aa and vec bb the first vec aa allways can be decomposed as a sum of two components: one parallel to vec bb and another perpendicular to vec bb.

The parallel component is the projection of vec aa onto vec bb or
vec a_P = << vec a, (vec b)/norm(vec b) >> (vec b)/norm(vec b)= << vec a, vec b >> (vec b)/norm(vec b)^2aP=a,bbbb=a,bbb2
and the perpendicular component given by
vec a_T = vec a - vec a_P = vec a - << vec a, vec b >> (vec b)/norm(vec b)^2aT=aaP=aa,bbb2

So index PP for parallel and TT for perpendicular. We can verify that

vec a_P +vec a_T = vec aaP+aT=a
<< vec a_P, vec a_T>> = << << vec a, vec b >> (vec b)/norm(vec b)^2, vec a - << vec a, vec b >> (vec b)/norm(vec b)^2 >> = 0aP,aT=a,bbb2,aa,bbb2=0
<< vec a_T, vec b>> = << vec a - << vec a, vec b >> (vec b)/norm(vec b)^2, vec b >> = 0aT,b=aa,bbb2,b=0

In our case

vec a_P = 10/21{-2hat i,-hat j,4hat k}aP=1021{2ˆi,ˆj,4ˆk}
vec a_T = 1/21{83 hat i,94 hat j, 65 hat k}aT=121{83ˆi,94ˆj,65ˆk}