If... color(white)x^(x + 1)C_3 - ^(x - 1)C_3 = 16x = ?

1 Answer
Nov 22, 2017

x=5

Explanation:

C_3^(x+1)=((x+1)x(x-1))/(1.2.3)

and C_3^(x-1)=((x-1)(x-2)(x-3))/(1.2.3)

Therefore C_3^(x+1)-C_3^(x-1)

= ((x+1)x(x-1))/(1.2.3)-((x-1)(x-2)(x-3))/(1.2.3)

= (x-1)/6{x(x+1)-(x-2)(x-3)}

= (x-1)/6{x^2+x-(x^2-5x+6)}

= (x-1)/6(6x-6)

= (x-1)^2

Hence C_3^(x+1)-C_3^(x-1)=16x is equivalent to

(x-1)^2=16

or x-1=+-4

i.e. x=5 or -3

and if we consider only as a positive integer x=5