C_3^(x+1)=((x+1)x(x-1))/(1.2.3)Cx+13=(x+1)x(x−1)1.2.3
and C_3^(x-1)=((x-1)(x-2)(x-3))/(1.2.3)Cx−13=(x−1)(x−2)(x−3)1.2.3
Therefore C_3^(x+1)-C_3^(x-1)Cx+13−Cx−13
= ((x+1)x(x-1))/(1.2.3)-((x-1)(x-2)(x-3))/(1.2.3)(x+1)x(x−1)1.2.3−(x−1)(x−2)(x−3)1.2.3
= (x-1)/6{x(x+1)-(x-2)(x-3)}x−16{x(x+1)−(x−2)(x−3)}
= (x-1)/6{x^2+x-(x^2-5x+6)}x−16{x2+x−(x2−5x+6)}
= (x-1)/6(6x-6)x−16(6x−6)
= (x-1)^2(x−1)2
Hence C_3^(x+1)-C_3^(x-1)=16xCx+13−Cx−13=16x is equivalent to
(x-1)^2=16(x−1)2=16
or x-1=+-4x−1=±4
i.e. x=5x=5 or -3−3
and if we consider only as a positive integer x=5x=5