If... color(white)x^(x + 1)C_3 - ^(x - 1)C_3 = 16x = ?xx+1C3x1C3=16x=?

1 Answer
Nov 22, 2017

x=5x=5

Explanation:

C_3^(x+1)=((x+1)x(x-1))/(1.2.3)Cx+13=(x+1)x(x1)1.2.3

and C_3^(x-1)=((x-1)(x-2)(x-3))/(1.2.3)Cx13=(x1)(x2)(x3)1.2.3

Therefore C_3^(x+1)-C_3^(x-1)Cx+13Cx13

= ((x+1)x(x-1))/(1.2.3)-((x-1)(x-2)(x-3))/(1.2.3)(x+1)x(x1)1.2.3(x1)(x2)(x3)1.2.3

= (x-1)/6{x(x+1)-(x-2)(x-3)}x16{x(x+1)(x2)(x3)}

= (x-1)/6{x^2+x-(x^2-5x+6)}x16{x2+x(x25x+6)}

= (x-1)/6(6x-6)x16(6x6)

= (x-1)^2(x1)2

Hence C_3^(x+1)-C_3^(x-1)=16xCx+13Cx13=16x is equivalent to

(x-1)^2=16(x1)2=16

or x-1=+-4x1=±4

i.e. x=5x=5 or -33

and if we consider only as a positive integer x=5x=5