If x+y+z=1,x^2+y^2+z^2=2 and x^3+y^3+z^3=3 then what's the value of x^4+y^4+z^4?
1 Answer
Explanation:
Given:
{ (x+y+z=1), (x^2+y^2+z^2=2), (x^3+y^3+z^3=3) :}
The elementary symmetric polynomials in
Note that:
2(xy+yz+zx) = (x+y+z)^2-(x^2+y^2+z^2) = -1
So:
xy+yz+zx = -1/2
Note that:
6xyz = (x+y+z)^3-3(x+y+z)(x^2+y^2+z^2)+2(x^3+y^3+z^3) = 1
So:
xyz = 1/6
Then:
x^4+y^4+z^4 = (x^2+y^2+z^2)^2-2(x^2y^2+y^2z^2+z^2x^2)
color(white)(x^4+y^4+z^4) = (x^2+y^2+z^2)^2-2((xy+yz+zx)^2-2xyz(x+y+z))
color(white)(x^4+y^4+z^4) = 2^2-2((-1/2)^2-2(1/6)(1))
color(white)(x^4+y^4+z^4) = 4-2(1/4-1/3)
color(white)(x^4+y^4+z^4) = 4+2/12
color(white)(x^4+y^4+z^4)= 4+1/6
color(white)(x^4+y^4+z^4)= 25/6
Bonus
Note that:
(t-x)(t-y)(t-z) = t^3-(x+y+z)t^2+(xy+yz+zx)t-xyz
So substituting the values for the elementary symmetric polynomials that we found, we find that
t^3-t^2-1/2t-1/6 = 0
or if you prefer:
6t^3-6t^2-3t-1=0
In theory we could solve this using Cardano's method and directly evaluate
The three roots are:
t_1 = 1/6(2 + root(3)(44 - 6 sqrt(26)) + root(3)(44 + 6 sqrt(26)))
t_2 = 1/6(2 + omega root(3)(44 - 6 sqrt(26)) + omega^2 root(3)(44 + 6 sqrt(26)))
t_3 = 1/6(2 + omega^2 root(3)(44 - 6 sqrt(26)) + omega root(3)(44 + 6 sqrt(26)))
where