If xsqrt(1 + y) + ysqrt(1 + x) = 0x1+y+y1+x=0. Then how will you prove that dy/dx = -1/(1 + x)^2dydx=1(1+x)2??

1 Answer

dy/dx=-1/(x+1)^2dydx=1(x+1)2

Explanation:

xsqrt(1 + y) + ysqrt(1 + x) = 0x1+y+y1+x=0

xsqrt(1 + y)=-ysqrt(1 + x)x1+y=y1+x

x^2*(1 + y)=(-y)^2*(1 + x)x2(1+y)=(y)2(1+x)

x^2*(1 + y)=y^2*(1 + x)x2(1+y)=y2(1+x)

x^2 + x^2*y=y^2+y^2*xx2+x2y=y2+y2x

x^2 -y^2=y^2*x-x^2*yx2y2=y2xx2y

(x+y) * (x-y) = -xy * (x-y)(x+y)(xy)=xy(xy)

x+y = -xyx+y=xy

x = -xy-yx=xyy

x = -y* (x+1)x=y(x+1)

y=-x/(x+1)y=xx+1

dy/dx=[-1*(x+1)-(-x)*1]/(x+1)^2dydx=1(x+1)(x)1(x+1)2

dy/dx=-1/(x+1)^2dydx=1(x+1)2

1) I solved this equation for y.

2) I differentiated both sides.