xylogxyx+y=yzlogyzy+z=zxlogzxz+x
⇒logxyx+yxy=logyzy+zyz=logzxz+xzx
⇒logx+logy1x+1y=logy+logz1y+1z=logz+logx1z+1x=k say
then k(1x+1y)=logx+logy .........................(1)
k(1y+1z)=logy+logz .........................(2) and
k(1z+1x)=logz+logx .........................(3)
Adding the three, we get 2k(1x+1y+1z)=2(logx+logy+logz) or
k(1x+1y+1z)=logx+logy+logz .........................(4)
Now subtracting (1), (2) and (3) from (4), we get
kz=logz i.e. k=zlogz=logzz .........................(5)
kx=logx i.e. k=xlogx=logxx .........................(6)
ky=logy i.e. k=ylogy=logyy .........................(5)
(5), (6) and (7) give us
logxx=logyy=logzz
i.e. xx=yy=zz