If xylogxyx+y=yzlogyzy+z=zxlogzxz+x Show that xx=yy=zz?

1 Answer
Jul 15, 2017

Please see below.

Explanation:

xylogxyx+y=yzlogyzy+z=zxlogzxz+x

logxyx+yxy=logyzy+zyz=logzxz+xzx

logx+logy1x+1y=logy+logz1y+1z=logz+logx1z+1x=k say

then k(1x+1y)=logx+logy .........................(1)

k(1y+1z)=logy+logz .........................(2) and

k(1z+1x)=logz+logx .........................(3)

Adding the three, we get 2k(1x+1y+1z)=2(logx+logy+logz) or

k(1x+1y+1z)=logx+logy+logz .........................(4)

Now subtracting (1), (2) and (3) from (4), we get

kz=logz i.e. k=zlogz=logzz .........................(5)

kx=logx i.e. k=xlogx=logxx .........................(6)

ky=logy i.e. k=ylogy=logyy .........................(5)

(5), (6) and (7) give us

logxx=logyy=logzz

i.e. xx=yy=zz