If y=sqrt(x^2+6x+8)y=x2+6x+8,show that one value of sqrt(1+iy)+sqrt(1-iy)=sqrt(2x+8)1+iy+1iy=2x+8?

2 Answers
Dec 30, 2017

Kindly find a Proof in the Explanation.

Explanation:

y=sqrt(x^2+6x+8)y=x2+6x+8.

:. y^2=x^2+6x+8.

Adding 1 to both sides, y^2+1=x^2+6x+9=(x+3)^2.

Taking square root, sqrt(y^2+1)=x+3, or, x=sqrt(y^2+1)-3

"Therefore, "2x+8,

=2{sqrt(y^2+1)-3}+8,

=2sqrt(y^2+1)+2,

=2+2sqrt(1-(-y^2)),

=2+2sqrt(1-(iy)^2),

=2+2sqrt{(1+iy)(1-iy),

=(1+iy)+(1-iy)+2sqrt{(1+iy)(1-iy),

=(sqrt(1+iy))^2+(sqrt(1-iy))^2+2sqrt{(1+iy)(1-iy)}, i.e., ,

2x+8={sqrt(1+iy)+sqrt(1-iy)}^2.

Taking square root, we get,

sqrt(2x+8)=sqrt(1+iy)+sqrt(1-iy), as desired!

Q.E.D.

Enjoy Maths.!

Dec 30, 2017

see below

Explanation:

sqrt(1+iy)+sqrt(1−iy)=sqrt(2x+8)

1+iy+2sqrt(1+iy)sqrt(1−iy)+1-iy=2x+8

2+2sqrt(1+iy)sqrt(1−iy)=2x+8

sqrt((1+iy)*(1−iy))=(2x+6)/2

(sqrt(1−(iy)^2))^2=(x+3)^2

1+y^2=x^2+6x+9

y^2=x^2+6x+8

y=sqrt(x^2+6x+8)

Now we know it is true for any number from interval: x in (-oo,-4]uuu[-2,oo)