As both #x# and #z# are related to #y# we can express them as follows:
Given:#" "color(red)( y)" "color(blue)(alpha)" "color(red)( x)" "color(blue)(alpha)" "color(red)( 1/z^2)#
Where #alpha# means proportional to.
Let #k" and "c# be constants of variation. Then we have:
#y=k x=c/z^2#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the values of "k" and "c)#
Base condition is that at #y=20 ; x=50 ; z=5#
#color(brown)("To determine "k)#
#=>y=kx" "->" "20=k(50)#
Divide both sides by 50
#20/50=kxx50/50" "#
but #50/50=1#
#color(brown)(k=20/50=2/5#
'...........................................................
#color(brown)("To determine "c)#
#=>y=c/z^2" "->" "20=c/(5^2)#
Multiply both sides by 25
#color(brown)(c=20xx25= 500)#
'.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the value of "y" at "x=3)#
#y=kx " "->" " y=2/5xx3#
#color(blue)( y=6/5)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the value of "y" at "z=6)#
#y=c/z^2" "->" "y=500/6^2#
#y=13 8/9 -> 125/9#