In the binomial expansion of (x/3 – 4/y)7, what is the coefficient of the term (x/y)4?
1 Answer
May 6, 2018
See below:
Explanation:
Let's do the expansion and see what we have:
((7),(0))(x/3)^7(-4/y)^0=(1)(x^7/2187)(1)=(x^7)/(2187) ((7),(1))(x/3)^6(-4/y)^1=(7)(x^6/729)(-4/y^6)=-(28x^6)/(729y) ((7),(2))(x/3)^5(-4/y)^2=(21)(x^5/243)(16/y^2)=(112x^5)/(81y^2) ((7),(3))(x/3)^4(-4/y)^3=(35)(x^4/81)(-64/y^3)=-(2240x^4)/(81y^3) ((7),(4))(x/3)^3(-4/y)^4=(35)(x^3/27)(256/y^4)=(8960x^3)/(27y^4) ((7),(5))(x/3)^2(-4/y)^5=(21)(x^2/9)(-1024/y^5)=-(7168x^2)/(3y^5) ((7),(6))(x/3)^1(-4/y)^6=(7)(x/3)(4096/y^6)=(28672x)/(3y^6) ((7),(7))(x/3)^0(-4/y)^7=(1)(1)(-16384/y^7)=-16384/y^7
Giving the entire expansion as:
There is no term that has a