Let, I=int(cos^3x+cos^5x)/(sin^2x+sin^4x)dxI=∫cos3x+cos5xsin2x+sin4xdx,
=int{cos^3x(1+cos^2x)}/{sin^2x(1+sin^2x)}dx=∫cos3x(1+cos2x)sin2x(1+sin2x)dx,
=int{cos^2x(1+cos^2x)}/{sin^2x(1+sin^2x)}cosxdx=∫cos2x(1+cos2x)sin2x(1+sin2x)cosxdx,
=int{(1-sin^2x)(1+ul(1-sin^2x))}/{sin^2x(1+sin^2x)}cosxdx.
This shows that the substn. sinx=t," so that, "cosxdx=dt,
should work.
Hence, I=int{(1-t^2)(2-t^2)}/{t^2(1+t^2)}dt=int(t^4-3t^2+2)/(t^4+t^2)dt,
=int{(t^4+t^2)-4t^2+2}/(t^4+t^2)dt,
=int{(t^4+t^2)/(t^4+t^2)-{2(2t^2-1)}/(t^4+t^2)}dt,
=int1dt-2int(2t^2-1)/{t^2(t^2+1)}dt,
=t-2int{(2t^2)/{t^2(t^2+1)}-1/{t^2(t^2+1)}}dt,
=t-2int{2/(t^2+1)-{(t^2+1)-t^2}/{t^2(t^2+1)}}dt,
=t-4int{1/(t^2+1)dt+2int{(t^2+1)/{t^2(t^2+1)}-t^2/{t^2(t^2+1)}}dt,
=2-4arctant+2int{1/t^2-1/(t^2+1)}dt,
=t-4arctant+2{-1/t-arctant},
=t-2/t-6arctant.
Since, t=sinx, we have,
I=sinx-2cscx-6arctan sinx+C, as desired!
Enjoy Maths.!